๐ฐ Fake News Detector using BERT
This beginner-friendly AI mini project shows how to build a fake news detection system using the BERT model with Hugging Face Transformers.
๐งฐ Prerequisites
- Python 3.x
- Transformers, Scikit-learn, Pandas, NumPy
- Basic NLP knowledge
๐ฆ Step 1: Install Required Libraries
pip install transformers scikit-learn pandas torch
๐ง Step 2: Load Dataset and Preprocess
import pandas as pd
from sklearn.model_selection import train_test_split
df = pd.read_csv('fake_or_real_news.csv') # Dataset with 'text' and 'label' columns
train_texts, val_texts, train_labels, val_labels = train_test_split(
df['text'], df['label'], test_size=0.2)
๐งช Step 3: Tokenize with BERT
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train_encodings = tokenizer(train_texts.tolist(), truncation=True, padding=True, max_length=512)
val_encodings = tokenizer(val_texts.tolist(), truncation=True, padding=True, max_length=512)
๐ฏ Step 4: Define Dataset Class
import torch
class NewsDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} | {'labels': torch.tensor(self.labels[idx])}
def __len__(self):
return len(self.labels)
๐ค Step 5: Train the Model
from transformers import BertForSequenceClassification, Trainer, TrainingArguments
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
evaluation_strategy='epoch',
logging_dir='./logs',
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=NewsDataset(train_encodings, train_labels.tolist()),
eval_dataset=NewsDataset(val_encodings, val_labels.tolist()),
)
trainer.train()
๐ Student Challenges
- Test with your own news headlines or stories
- Visualize confusion matrix
- Deploy using Flask/Streamlit
- Evaluate model accuracy
๐ More AI Projects
- ๐ Text Summarizer with Transformers
- ๐ธ Animal Classifier with VGG16
- ๐ง Sentiment Analyzer with BERT
- ๐ฌ Chatbot with Python
Explore more tutorials at DarchumsTech Blog.
Try it yourself
Python Editor
Comments
Post a Comment