Natural Language Processing with Transformers (Hugging Face Tutorial)
Transformers have revolutionized NLP tasks like translation, summarization, and sentiment analysis. In this tutorial, we’ll use Hugging Face Transformers to fine-tune a BERT model for sentiment classification.
🧠What is a Transformer?
Transformers use attention mechanisms to model relationships between all words in a sentence at once. Unlike RNNs or LSTMs, they do not require sequential data flow.
🔧 Prerequisites
- Python 3.7+
- pip install:
transformers datasets torch
- Basic understanding of NLP
🔨 Step-by-Step: Fine-Tune BERT for Sentiment Analysis
Step 1: Install Dependencies
!pip install transformers datasets torch
Step 2: Load Dataset and Model
from datasets import load_dataset
from transformers import BertTokenizer, BertForSequenceClassification
dataset = load_dataset("imdb")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
Step 3: Tokenize the Data
def tokenize_function(example):
return tokenizer(example["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
Step 4: Create DataLoaders
from torch.utils.data import DataLoader
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
train_dataloader = DataLoader(tokenized_datasets["train"], batch_size=8, shuffle=True, collate_fn=data_collator)
eval_dataloader = DataLoader(tokenized_datasets["test"], batch_size=8, collate_fn=data_collator)
Step 5: Set Up Optimizer and Trainer
from transformers import AdamW, TrainingArguments, Trainer
training_args = TrainingArguments(output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=8)
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], tokenizer=tokenizer)
Step 6: Train the Model
trainer.train()
✅ Evaluate the Model
results = trainer.evaluate()
print(results)
📌 Tips
- Use a GPU for faster training: Google Colab works well
- Start with smaller datasets to prototype
- Use
DistilBERT
for faster inference
📱 Mobile Optimization Notice
This tutorial is structured with responsive text and scrollable code blocks, ideal for Blogspot mobile viewing. It’s also SEO-optimized with metadata tags for discoverability.
🎯 Conclusion
Transformers like BERT allow you to achieve state-of-the-art NLP performance with minimal effort. Try modifying this code for your own datasets or tasks like spam detection or topic classification.
🔜 Next Up
Coming soon: Reinforcement Learning with OpenAI Gym — stay tuned!
Comments
Post a Comment